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Abstract

Eelgrass (Zostera marina} can provide vital ecological
functions in stabilizing sediments, influencing current
dynamics, and contributing significant amounts of biomass
to numerous food webs in coastal ecosystems. Mapping
eelgrass beds is important for coastal water and nearshore
estuarine monitoring, management, and planning. This
study demonsirated the possible use of high spatial {approx-
imately 5 m) and temporal (maximum low tide} resolution
airborne multispectral scanner on mapping eelgrass beds

in Northern Puget Sound, Washington. A combination of
supervised and unsupervised classification approaches were
performed on the multispectral scanner imagery. A normal-
ized difference vegetation index {NDVI} derived from the red
and near-infrared bands and ancillary spatial information,
were used to extract and mask eelgrass beds and other
submerged aquatic vegetation {SAV} in the study area. We
evaluated the resulting thematic map (geocoded, classified
image] against a conventional aerial photograph interpreta-
tion using 260 point locations randomly stratified over five
defined classes from the thematic map. We achieved an
overall accuracy of 92 percent with 0.92 Kappa Coefficient
in the study area. This study demonstrates that the airborne
multispectral scanner can be useful for mapping eelgrass
beds in a local or regional scale, especielly in regions for
which optical remote sensing from space is constrained by
climatic and tidal conditions.

Introduction

Eelgrass (Zostera marina), a submerged flowering plant that
spreads by seed germination and rhizome growth, is found
in nearshore estuarine and coastal water in the Northern
Hemisphere at tidal elevations from +1.8 m (6 ft) to —6.7 m
(22 ft) mean lower low water (MLLW). The dark green, long,
narrow, ribbon shaped leaves of eelgrass plants with rounded
tips can be 20 cm to 50 cm in length, with exceptional
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lengths up to about 2 m also observable (Tyler-Walter,
2004). A canopy height similar to the leaf lengths can be
found depending on the intertidal locations, environments,
and water column properties. Eelgrass may distributs in
patches, fringe beds, or in large meadows that provide vital
acological functions ranging from substrate stabilization

to providing a nursery and refuge for a high diversity of
animals and plants (Phillips, 1972}, The health status of
eelgrass beds may also serve as a water quality indicator for
coastal ecosystems (Dennison ef al., 1993). Given the high
ecological importance of eelgrass bads and their reduction in
distribution and abundance through shoreline development
(Short and Burdick, 1996; Moore et al., 1996), maintaining
an inventory of this important resource is crucial to assess-
ing and developing mitigation plans to offset future natural
and unnatural losses.

Remote sensing has been used as a tool for mapping
wetlands (e.g., National Wetlands Inventory Program) and
coastal habitats (e.g., The National Oceanic and Atmospheric
Administration’s (NOAA) Coastal Change Analysis Program,
or C-CAF) for decades. Guidelines were established in c-cap
to use various remotely sensed data, such as natural color
and color infrared aerial photography and multispectral
imagery, for developing estuarine habitat maps in coastal
regions {Dobson et al., 1999; Ferguson and Wood, 1990).
Aerial photography has almost become the standard for
most coastal wetland mapping (Ferguson and Wood, 1990;
Ferguson et al., 1993; Pasqualini et al., 2001; Handley et al.,
2004), because it can provide detailed spatial resolution
(sub-meter resolution) for intertidal and even shallow water
vegetation interpretation with a relatively strong spectral
response in the visible wavelengths. However, aerial photog-
raphy is usually not radiometrically corrected, and it has
limited spectral resolution. Therefore, it is difficult to use
a digital image classification procedure to quantify the
distribution and abundance of eelgrass beds from digitally
scanned aerial photographs, partly because of limited spec-
tral resolution and partly because of the need for nonlinear
calibration of exposures between and within each photo-
graph frame. Consequently, most aerial photography has
been used for mapping eelgrass only through a manual
photointerpretation process. However, an experienced
wetland expert with aerial photointerpretation skills is
required to provide acceptable results in the photointerpreta-
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ton process. It can also be a time-consuming and labor-
intensive process (Mumby et al.,, 1999).

Recent advances in satellite technology have offered
great potential for eelgrass mapping, particularly the suc-
cessful launching of the Ikonos satellite in late-1999 and
the QuickBird satellite in late-2001. These satellites carry
multispectral sensors with high spatial resolution, ranging
from a few meters to sub-meter. Unfortunately, acquisition
of satellite images for submerged aquatic vegetation (SAV)
mapping may not coincide with optimal conditions such
as: (a) maximum low tide time window when the maximum
area of vegetation is exposed to sunlight; (b) sediment
brightness in the tidelands and under water where brighter
background tends to have better delineation with sav; and
{c) water turbidity and depth where/when clearer and shal-
lower water may produce more accurate results. Although
the satellites (e.g., Ikonos} can be programmed at different
view angles to increase the target acquisition opportunities,
the time within maximum low tide window is still limited,
especially in very cloudy coastal environments.

The medium spatial resolution satellite sensors, such
as Landsat Themaptic Mapper (TM] and SPOT multispectral
sensor (e.g., SPOT Xs), may offer some opportunities for
mapping the changes at a regional scales in coastal wetlands
with a relatively longer term historical image database and
cost-effective approach (Ferguson and Korfmacher, 1997;
Mumby et al.,, 1999; Mumby and Edwards, 2002). However,
the medium spatial resolution (e.g., 30 m Landsat Thematic
Mapper and 20 m 50T High-Resolution Visible multispec-
tral sensor) can hamper the actual use of the satellite images
for mapping eelgrass beds or other SAV at a local scale if
the eslgrass beds are in small patches (e.g., a few meters in
diameter). In a recent study of detailed coral reef mapping,
Lubin et al. {2001) used a coupled atmosphere-ocean dis-
crete ordinates radiative transfer model to predict that
satellite sensors, such as Landsat T and Ikonos, may be
adversely affected by the atmospheric Rayleigh scattering
in the blue bands. Mumby and Edwards (2002} also demon-
strated the weakness of satellite sensors (e.g., Landsat ™
and Tkonos) over the airborne multispectral scanners (s.g.,
cAsl} in their seagrass and coral reef mapping.

Given all the pros and cons of currently available
satellite sensors and aerial photography, we hypothesized
that airborne multispectral sensors may be used very offi-
ciently for mapping eelgrass at a local and/or regional
scales. Airborne multispectral sensors can offer adequate
spectral and spatial resolution with optimum control and
flexibility to select maximum low tide time windows and
minimurmn cloud cover for image acquisition and digital
classification, and may provide a cost-effective, time-saving
and consistent approach for mapping a relatively large area
compared to conventional aerial photointepretation (Mumby
et al., 1999; Mumby and Edwards, 2002).

A few studies carried out in the Pacific Northwest have
been conducted to validate the airborne multispectral sensors
approach. In Tillamook Bay, Oregon, Strittholt and Frost
{1996} used a 1 m resolution and three-band multispectral
airborne imaging system to determine abundance and distribu-
tion of eelgrass. Their overall 80 percent accuracy for a digital
image classification method with field verification indicated
that airborne multispectral imagery may be a cost-effective
approach for mapping eelgrass habitats. In a similar study,
Ritter and Lanzer {1997) used a more advanced multispectral
airborne sensor, the Compact Airborne Spectrographic Imager
{casl), to map nearshore vegetation in Washington State's
Puget Sound. The CASI systern in this study was confignred
in 11 bands ranging from visible to near-infrared spectral
wavelengths with a 4 m spatial resolution. A classification
accuracy assessment was performed using 164 field points of
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data to verify a classified image map derived from the casi
interpretation. Based on their confusion matrix analysis,
producer (a measure of possibility of a class labeled into the
same class as it appeared in the field) and user (a measure of
possibility of a class labeled into the same class as it deter-
mined in the image classification process) accuracies for
eelgrass class were 81.7 percent and 90.5 percent, respectively.
A series of digital geographic information system (GIS) vector
layers with various scales also was created in this project and
served as important baseline information for coastal resources
managers and decision-makers. More studies of seagrass
mapping using high-resolution multispectral scanners were
conducted in different parts of the coastal regions, such as in
the tropical Western Atlantic (Mumby ef al., 1997), over the
Roscoff coastal zone of Brittany, France {Bajjouk et al., 1996;
Bajjouk et al., 1998), and in the Turks and Caicos Islands of
British West Indies (Mumby and Edwards, 2002). The results
of these studies seem to suggest that the multispectral scan-
ners are superior in overall accuracy and spectral and spatial
resolution compared to the satellite sensors (e.g., Landsat TM™,
SPOT X8, and Ikonos).

Given the capabilities and flexibility of airborne mul-
tispectral sensors, this study was intended to further
demonstrate that an airborne multispectral scanner with
12 relatively broad bands ranging from visible, near-infrared
and mid-infrared to thermal wavelengths at a 5 m spatial
resolution, may offer efficiencies in mapping eelgrass beds
and delineating coastal wetlands at a local scale, as well
as providing comparable accuracies to traditional airphoto
interpretation. Therelore, this investigation evaluated a
multi-step eelgrass image classification of airborne multi-
spectral scanner data collected over part of the Northern
Puget Sound, Washington, using a conventional airphoto
interpretation.

Methods

Alrborne Image Acquisltion and Data Preparation

We conducted this study in the Northern Puget Sound of
the Swinomish Indian Tribal Community (SITC) reservation
(48° 24' N, 122° 33’ W), about 80 km north of Seattls,
Washington {Figure 1). There are approximately 650 hectares

Washington

Selected
Flight Line

Figure 1. Study area on the west side of the Swinomish
Indian Tribal Community (SITC) reservation.
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of tidelands within the study area, about 90 percent of all
tidelands on the SITC reservation.

This project was part of a joint UJ.5, National Aeronau-
tics and Space Administration (NASA) - 1.5, Environmental
Protection Agency (EPA) effort to use advanced monitoring
technology to protect the environment. A Daedalus 1268
multispectral scanner available from the Airborne Sensor
Facility of the NASA Ames Research Center (Moffet Field,
California) was used for this study. (Traditionally, this
scanner is called the Airborne Thematic Mapper Simulator,
as the Landsat T™ bands can be synthesized from the higher
resolution airborne data.) The 12 band sensor can be mounted
either in a low altitude {flying at about 1.8 km altitude, such
as KingAir Beechcraft B200 or Cessna Citation) aircraft to
acquire multispectral scanner images at high spatial resolu-
tion (approximately 5 m) or in a high altitude (flying at
about 20 km altitude, such as ER-2} aircraft to acquire
medium (approximately 25 m) spatjal resolution images.
Total field of view from the sensor is 42.5 degrees. The
12 spectral bands cover a spectral range from visible, near-
infrared and mid-infrared to therma! wavelengths. Bands
2,3,5 7,9, 10, and 11 (or 12) of the scanner have the same
band wavelength as Landsat 4 or 5 Thematic Mapper bands
1,2,3,4,5,7, and 6 (thermal) (Table 1). Additionally, four
more bands in the sensor can provide more spectral infor-
mation than the Landsat Thematic Mapper.

The airborne multispectral scanner data were acquired
on 30 July 2000 during a near maximum low tide time
window (about —0.9 m MLLW) over an altitude of 1.8 km
at a nadir pixel size of 5 m. This timing was selected to
maximize the amount of sav that would be exposed without
water cover and to minimize water depth over the remaining
beds. A total of four flight lines in a north and south direc-
tion covered the intertidal and upland areas of the SITC
reservation. A Wild RC-10 camera also was mounted in the
airplane to acquire high spatial resolution color infrared (CIR)
aerial photographs. Both the airborne scanner imagery and
CIR photography were acquired under cloud-free conditions
with a few areas of sun glint over the southern part of the
study area visible in the CIR photography. Post-flight calibra-
tion was carried out with all in-flight recorded calibration
parameters. The airborne multispectral scanner image data
sots for all flight lines were in excellent condition.

In preparing the georeferenced hase map, the CIR pho-
tographs were digitally scanned, and a professional pho-
togramrmetric engineering company created 1-foot spatial
resolution Digital Orthophoto Quads (D0OQ) to cover most of
the SITC reservation. The horizontal and vertical accuracies
of the DOQ were evaluated at 1.5 m (*5 ft) and *0.6 m

Taple 1. A LisT oF WAVELENGTHS FOR THE AIRBORNE
MULTISPECTRAL SCANNER

Compared to ~ Wavelength

Band Wavelength (pm) Landsat ™ Description

1 0.42-0.45 Vigible

2 0.45-0.52 ™1 Visible

3 0.52-0.60 ™2 Visible

4 0.60~0.62 Visible

5 0.63-0.69 TM3 Visible

6 0.69-0.75 Visible-Near

infrared

7 0.76—0.90 T™M4 Near infrared

8 0.91-1.05 Near infrared

g 1.55-1.75 TM5 Near infrared
10 2.08-2.35 TM7 Mid infrared
11 (High Gain) 8.5-14.0 TMG Thermal
12 (Low Gain) 8.5-14.0 TME Thermal
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{*x2 ft) RMSE, respectively. All DOQ frames (created in the
Washington State Plane projection coordinate system) were
re-projected and re-sampled into the Universal Transverse
Mercator (UTM) projection coordinate system with a 2 m
spatial resolution. Finally, all DOQ frames were mosaicked
together to create a DOQ base map layer for georeferencing
the airborne scanner images acquired simultanecusly.

Field Survey

In the month prior to the 30 July 2000 aerial mapping by
NASA, field teams made up of personnel from the EPA Region
16 and from the Swinomish Indian Tribal Community
established 11 ground control points from intertidal areas

to the uplands in the study area. The control points were
subsequently used to orthorectify the aerial photographs,

In addition, the field teams alsa set up 21 sAv baseline
stations, where composition and density of sav were recorded
and used to field verify interpretation and classification of the
aerial photographs and airborne scanner imagery, respectively.

The control point markers in intertidal or wetland areas
were made of 0.8 m (30 inches) wide white butcher paper
fixed to the substrate, and those on the uplands were located
on blacktop pavements and painted white. The control point
markers were either “X" or “L” shaped, the letters were
at least 3 m (10 feet) long and each stripe was at least 0.6 m
(2 feet) wide. A hand-held Trimble GeoExplorer® Global
Positioning System {GPS) unit was used to record locations for
the center of the “Xs" and the junction of the two legs of the
“Ls”. The recorded cps files were post-processed using differ-
ential corrections to control the accuracy within +3 m.

The composition and density of sav beds were measured
in 0.25 m? quadrats at the 21 baseline stations. Each 0.25 m?
quadrat was divided by monofilament into 25 subunits
measuring 10 cm X 10 cm. The field teams recorded the
distribution and abundance of eelgrass (Zostera marina
and Zostera joponica) and other Sav (Ulva spp., Fucus spp.,
Enteromorpha spp., and several unidentified species of
red and brown algae) using point-intercept frequencies of
occurrence (Young et al., 1998). Field personnel also sketched
and photographed the eelgrass beds at each baseline station
for additional information about eelgrass density measure-
ment and its spatial extent of eelgrass nearby. This informa-
tion was used to help photointerpretation and training pixel
selection later. Plate 1 shows an example of an eelgrass density
phatograph taken over a 0.25 m? quadrat for station M3.

The GPS position of the center of the selgrass baseline
station was also recorded and differentially corrected. The
results of this part of the survey can be found in Table 2.

The eelgrass beds were designated as north (N), middle (M),
southwest (SW), or east (E), indicating their locations in the
study area. The north beds surveyed were north of Kiket Island
on the east side of Similk Bay, the middle beds extended south
side of Kiket Island to Snee-Oosh Beach, the southwest and
largest beds were southwest of Snee-Oosh Beach and nerth of
the southern end of the Swinomish Channel, and the east beds
were located in the Swinomish Channel (Plate 2).

Image Processing and Analysis

To demonstrate and evaluate the procedure, one flight line
covering more than 90 percent of the sav in the study area
was selected for the image analysis and processing. Ten of
the 12 bands (excluding the two thermal bands) wers used
in the image classification.

A simple tangential distortion correction algorithm was
used to reposition each pixel along the scanline. The off-nadir
pixels in each scanline were re-sampled based on the scan-
ner’s view angles between two adjacent pixels using a nearest
neighbor approach to preserve the spectral response of each
scanline. However, the geometric distortion caused by the
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Plate 1. An example of eelgrass density measurement
photograph taken at station number 3 in the middle
section of eelgrass beds (M3) in the study area.

TABLE 2. EELGRASS COVERAGE MEASURED IN BASELINE STATIONS
Distance
Bay to Upland Other Bare
Segment Station Edge of Eelgrass Plants  Substrate
Location D Bed (feet) (%) (%) (%)
North N1 24 gzl 4 4
N2 43 68 0 32
N3 10 88 12 0
N4 155 56 0 44
NG 14 80 0 20
N6 63 60 0 40
N7 11 60 28 12
Middle M1 17 60 0 40
M2 17 76 0 24
M3 111 48 0 52
M4 74 24 60 16
M5 14 28 72 0
Southwest SwW1 200 68 0 32
Sw2 42 96 4 0
sSw3 NM' 76 0 24
SW4 80 52 0 48
East" El 10 68 0 32
E2 24 72 8 20
E3 9 84 0 16
E6 NM 88 0 12
E7 NM 60 20 20

Notes: " Zostera japonica; *'not measured; Pstations E4-E5 were
small patches that were incompletely surveyed.

airplane motion (roll, yaw, and pitch) and one-dimensional
relief displacement was not geometrically corrected in the
simple tangential distortion correction process.

Because of the relatively stable flight conditions during
the image acquisition and small topographic variation (approx-
imately 3 to 5 m relief in the intertidal areas) of the study
area, we used a non-parametric georeferencing approach.
However, a first-order polynomial function for georeferencing
the entire flight line could not achieve the spatial accuracy
required for this study. Instead, we minimized the geometric
effects with a stepwise 2-degree polynomial approach. First,
we identified a total of 157 ground control points within the
selected airborne scanner flight line and the poQ base map
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Plate 2. Location of the baseline stations
overlaid on the digital ortho-photo quads
(D0Q).

layer through image matching. Then, we subdivided the entire
flight line covering the study area into four segments with
about 1,000 scanlines each. We built a 2-degree polynomial
function for each segment and individually warped the
scanner images into the DOQ base map coordinate system
(UTM, WGsB4, Zone 12) with a 5 m spatial resolution. Finally,
we mosaicked all four segments of the warped images together
to cover the study area. Errors for each segment image were
controlled within +5 m or about one pixel RMSE of the warped
segment images.
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Plate 3. The study area eelgrass classification result overlaid on the false color composites of airborne
multispectral scanner image and a zoom-in classification map for details.

Delineating eelgrass beds in intertidal areas is an extre-
mely complicated process because spectral signals of uplands
(or non-tidal wetlands), water columns, sediments, rocks,
algae, and other submerged aquatic vegetation types intend to
mix and/or intersperse with spectral signal of eelgrass beds
within an imagery. For example, eelgrass can be detected in
shallow water with a light sediment background better than in
deeper water with a dark sediment background. In addition,
the spatial resolution of the image can play an important part
in eelgrass bed delineation because of patchy/sparse distribu-
tion and variable abundance (density) of eelgrass beds. How
ever, it should be noted that the pixel spatial resolution of
the airborne multispectral scanner depends upon the flight
altitude and is adjustable.

In order to delineate the spectral variation in the inter-
tidal areas, we elected to use a “double elimination” stepwise
approach and consider one distinct spectral class at a time to
extract eelgrass beds and other classes. The first step in this
“double elimination” approach was to examine the spectral
responses present in the entire flight line and the field survey
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information to define the number of classes that could be
identified at the 5-meter spatial scale. Using an unsuper-
vised classification (1ISODATA method) for the entire flight line,
we determined that some targets in the uplands and in the
intertidal lands were spectrally similar in the multispectral
scanner data. For example, the dark (shaded) forest areas in
the uplands were confused with the dark signature of the
eelgrass beds in the shallow water. Once we noticed these
differences, we decided to mask the upland areas from the
eelgrass beds classification. The intertidal areas and the water
areas were defined by digitizing a polygon (area of interest)
on the airborne image, thus eliminating the uplands. In some
cases, salt marsh also was confused with the upland vegeta-
tion. However, use of contrast stretched multispectral imagery
and high spatial resolution CIR aerial photography allowed us
visually separate salt marsh areas from the uplands.

After masking out the upland areas, the unsupervised
classification (1ISODATA method) was reapplied to the inter-
tidal and water areas of the image to identify 25 classes.
Our wetland expert and field survey personnel carefully
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TasLe 3. DEFINED MAPPING CLASSES FOR THE STUDY AREA

Class Description

More than 60% eelgrass beds cover in
continuous distribution patterns

About 20-60% eelgrass beds cover in
discontinuous distribution patterns or patches

Eelgrass dense

Eelgrass sparse

Other SAV Mors than 60% other submerged aquatic
vegetation cover ar without eelgrass present

Bare earth Bare rocks, cobbles, beach, or mud flats

Salt marsh Estuarine emergent wetlands

examined the classification map and the field survey infor-
mation. Finally, with this preliminary process, we were able
to roughly label five classes from the 25 ISODATA classes in
the intertidal areas at the 5-meter resolution (Table 3).

The second step in the “double elimination” approach
was to eliminate water areas where seagrass and other sav
were no longer detectable by the airborne sensor during the
time of image acquisition. We used an unsupervised classifi-
cation method to define the boundary between the intertidal
and the water areas. We also used a normalized difference
vegetation index (NDVI) image derived from near-infrared
and red bands to identify areas of AV in the deeper water.
These boundaries marked the intertidal regions for further
image precessing.

The third step was to mask out the “bare earth” class
where no sAvV were detectable. We used the NDVI image again
to extract the “bare earth” class from the image. Therefore,
the only classes requiring image classification procedures
were the eelgrass (sparse and denss), other SAv, and salt
marsh classes as defined in Table 3.

The fourth step was to develop the training classes from
field baseline survey information. Because of the limited
spatial extent of each baseline station (0.25 m? quadrat each),
we had to locate the pixels in and nearby each selected
baseline station with the field photographs and sketches from
the baseline stations using image analysis software. From
these arsas of the image, a sufficient sample size (at least
35 pixels) was extracted for each training class using the pixel
region growth tool in the image analysis software. Training
pixels for each class also were verified in the DOQ aerial
photographs (1-foot resolution) with photointerpretation.

The fifth step was to evaluate the spectral separability
of training classes. Each training class pair was controlled
at a maximum separability value from 1.8 to 2.0, using the
Jeffries-Matusita transformed divergence measure (Jensen,
1986). Using the separability of the training classes as a
measure of uniqueness, we maximized the statistical differ-
ences between training sets in the classification stage.

The sixth step was to perform a supervised classifica-
tion with a maximum likelihood classifier for the study area
with the classes listed in Table 3, except “bare earth.” The
seventh and final step was to refine the classified image by
adjusting classification rule images using different thresh-
olds, especially for dense and sparse eelgrass classes. The
finalized classification was combined with the “bare earth”
class. A total of 2.8 percent of the pixels were unclassified,
most of which were in small patches identified as wood
debris, logs, tree shadows, or other SAV mixed with salt
marsh close to the upland edge within the wetland bound-
ary. Therefore, we assigned the unclassified pixels into a
“salt marsh/mixed” class in the final classification image.
Plate 3 shows all classes overlaid (except “bare sarth”) on
the false color composite of the airborne scanner image. We
summarized the “double-elimination” stepwise approach in
a flowchart shown in Figure 2.
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Figure 2. Flowchart for the “double-elimination™ step-
wise approach.

Accuracy Analysis

We choose a photointerpretation approach rather than a
field survey method to verify the image classification. This
is largely because of cost and time constraints and the
limitation of a narrow maximum low tide time window for
a field validation.

Woe first used a stratified random point sampling
approach to generate 295 points over the classified image.
A minimum of 30 points was selected for each class to
guarantee a 90 percent confidence interval for accuracy, as
suggested by Congalton (1991) and others (Senseman et al.,
1995; Jensen, 1986; Fitzpatrick-Ling, 1981; van Genderen
and Lock, 1977). After generating 295 points, we used
each point to define the center of a 2 % 2 pixel window,
The window size of 10 X 10 m (5 m per pixel) was chosen
mainly because the geometric accuracy of the scanner data
was estimated at +5 m.

We overlaid 295 accuracy point windows on the classi-
fied image to exiract class value for each point with a majority
rule within the 10 X 10 m area (or the 2 X 2 pixel window).
The field survey personnel and other experts with extensive
wetland experience independently conducted the photointer-
pretation of each accuracy point window overlaid on the DoQ
base map (2 m pixel resolution). The cR photographs {1-foot
resolution) of the study area also were used to assist the inter-
pretation process for verification of each class. The vegetation of
each 10 X 10 m area was interpreted and classified based on
the proportion of the area covered by each class and a visible
estimate of eelgrass area.

The area coverage by the DOQ was smaller than the
total area of the airborne scanner classified image. Therefore,
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only 260 of 285 accuracy point windows were clearly
identifiable on the DOQ base map layer. The remaining

35 accuracy point windows were either outside of the DOQ
area coverage or within tree shadow areas. So, we excluded
them in the final accuracy assessment.

Results and Discussion

Mapping Accuracy Evaluation

The final confusion matrix for the overall accuracy assess-
ment is shown in Table 4. We archived an overall accuracy
of 92 percent for mapping eelgrass in this study with
0.92 Kappa Coefficient. We must point cut that we obtained
the overall accuracy of 92 percent after lumping unclassi-
fied (2.8 percent) pixels into the “salt marsh” class as “salt
marsh/mixed.” Two of the 34 point areas photointerpreted
as the eelgrass sparse class were misclassified as the bare
earth class; while 3 of the 34 point areas photointerpreted
as the eelgrass sparse class were categorized as the eelgrass
dense (Table 4). We believe that the brightness of the sedi-
ments, the differsnce in spatial resolution between the
scanner image and the DOQ CIR aerial photographs, and
possible geareferencing accuracy may have caused the
uncertainty of boundaries among these three classes.

We further evaluated producer and user accuracy for
each individual class and found that the producer accuracy
for eelgrass sparse (76.5 percent) and user accuracy for
other SAV (77.1 percent) were relatively low (Table 5).
Some uncertainty between eelgrass and other SAvV may
exist because of spectral (mostly mixing of background
brightness) and spatial limitations in the data and in the
classification procedures. However, a 95 percent of pro-
ducer accuracy for “eelgrass dense” class was impressive
for eelgrass mapping. The results seem to be in agreement
with the early study carried out by Ritter and Lanzer (1997)
in the same region with a CASI scanner. In addition, Mumby
and Edwards (2002) concluded an B89 percent of overall
accuracy over a coarse habitat area (including coral, macroal-
gae, seagrass, and sand habitats) in the Turks and Caicos
Islands of British West Indies using a similar CASI scanner.
They also compared the CASI sensar with Landsat T™ and
Ikonos satellite sensors, which yielded an overall accuracy
of 73 percent and 68 percent, respectively. Ferguson and
Korfmacher (1997) reported a similar overall accuracy of
72.6 percent for Landsat T™ in their study carried in the
coastal region of North Carolina. Resulis from previous
studies and this study suggest that the advantage of spectral
and spatial resolution of multispectral scanners can play
an important part for eelgrass mapping. Despite of some
confusing within eelgrass classes (dense and sparse), results
from this study indicate that the use of airborne multispec-
tral scanner data for eelgrass mapping can be practical and
useful even though there may be some room for further

improvement by refining and developing a more accurate,
cost saving, and efficient procedure.

Implementatlon for Coastal Ecosystem Mapping

Eelgrass, Zostera marina, is one of the best-understood
marine benthic plants, both in terms of life history and as

a bioindicator (Berry et al., 2003). Therefore, monitoring

the health of eelgrass beds is an indirect measure of the
many ecological functions performed by these bioclogically
rich areas. Natural fluctuations in eelgrass abundance are
important to understand in order to accurately access human-
induced changes and to prevent or minimize them in the
future. Our high-resolution survey accurately mapped the
intertidal eelgrass beds as they occurred in July 2000. Most
of the subtidal beds were also mapped as the leaves of plants
in this area were floating on the surface during the approxi-
mately —0.9 m (—3 feet) MLLW tide that occurred in our
study area on 30 July 2000. Dive surveys in the Similk Bay
conducted in a previous study (Washington Department of
Natural Resources, 1996) found that the eelgrass beds only
sxtended down to a water depth of approximately —1.5 m (5
feet) MLLW. By surface inspections of the Skagit Bay beds

in this study, we found that most of the beds were much
shallower than the maximum depth (—8.8 m or —29 feet
MLLW) reported by Berry et al. (2003) for eelgrass beds in
Puget Sound. Future surveys using a similar remote sensing
technology at a water depth of near MLLW should give a
clear indication of the changes, if any, in eelgrass distribu-
tion and abundance, If significant changes have occurred,
further investigations would be needed to evaluate those
chemical and physical stressors that may be respomsible for
those changes.

Tribal, state, and federal agencies are vitally interested in
the health of shoreline resources that support many fish and
invertebrate spacies of subsistence, recreational, or commer-
cial value. An example of these concerns is the Washington
Department of Fish and Wildlife policy of “no-net-loss” of
eelgrass beds (Fresh, 1994). Intergovernmental coordination
and actions would likely be required in the event that the
distribution and abundance of eelgrass beds in our study
area were significantly reduced. The present eelgrass survey
would serve as the baseline from which changes could be
assessed.

Conclusion and Remarks

This study has demonstrated that high-reselution airborne
multispectral scanner data can be valuable and useful for
mapping eelgrass beds at local and regional scales. The
overall accuracy of 92 percent using the airborne multispec-
tral scanner in this study seems to agree with previous
studies carried out in the same region (Strittholt and Frost,
1996; Ritter and Lanzer, 1997) and other locations (Bajjouk
et al., 1996; Mumby et al, 1997; Mumby and Edwards,

TagLe 4, CONFUSION MATRIX FOR THE OVERALL ACCURACY ASSESSMENT WITH THE 260 POINT LOCATIONS

rd Truth
Class

Eelgrass Sparse Bare Earth Eelgrass Dense Other SAV Salt Marsh/Mixed Total
Eelgrass sparse 26 (76.5%)" 2 2 0 0 30
Bare Earth 2 83 (92.2%) 0 0 H 85
Eelgrass dense 3 2 75 (94.9%) ] 1 81
Other SAV 3 3 2 27 (100%) 0 35
Salt marsh/mixed 0 0 0 0 29 (96.7%) 29
Total 34 90 78 27 30 260

Overall accuracy = 92.3%, Kappa Coefficient 0.92

Note: Windicates that the producer accuracies in the parentheses.
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TABLE 5. PRODUCER AND USER ACCURACY ASSESSMENT

Producer User
Commission Omission Accuracy Accuracy

Class (%] (%) (%) (%)
Eelgrass sparse 15.4 30.8 76.5 86.7
Bare earth 2.4 8.4 92.2 97.6
Eelgrass dense 8 5.3 94.9 92.6
Other SAV 29.6 0 100 77.1
8alt marsh/mixed o 3.4 96.7 100

2002). An excellent producer accuracy of 85 percent was
obtained for eelgrass dense class. The relatively low pro-
ducer accuracy of 76.5 percent for eelgrass sparse class
needs to be further improved. Some uncertainty of mixing
spectral response hetween eelgrass sparse and other SAV may
be related to the variation of sediment background bright-
ness, spectral and spatial resolution of the imagery. Develop-
ment of improved classification procedures and a better
sensor tachnology, such as hyperspectral scanners, may be
further studied specifically for eelgrass mapping.

Some technical advantages of using the airbarne multi-
spectral scanner can be summarized as: (a) flexible acquisi-
tion time that can be scheduled at or near maximum low-tide
time windows to reduce water column effect and to mini-
mize cloud cover; (b) relatively high spatial and spectral
resolution for local scale mapping; and (c) the use of more
automated image classification procedures rather than the
time-consuming field survey approach.

We also suggest that acquisition of airborne multispec-
tral scanner imagery at and near maximum low tide time
windows can optimize the detection and delineation of
eelgrass beds in relatively deeper water.
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